-
Journalism: Loss of the hydrological functions of forests
Climate change helped transport the water from there to here, but the extent of the damage done is mainly the responsibility of BC’s out-of-control logging industry.
A short-wave infrared image of this summer’s 20,000-hectare July Mountain Fire (reddish brown area). The Coldwater River snakes along the fire’s lower edge on the left and then punches through the centre of the burn as it heads toward Merritt.
LET’S SURVEY SOME OF THE DAMAGE and the circumstances that led to the Lower Mainland being cut off from the rest of Canada and the flooding of Merritt and Princeton in mid November.
The Tank Hill Underpass, just east of Lytton, was built in 1957 to allow the newly widened Trans Canada Highway to pass underneath the CPR Railway. In all the years since, there’s no record of the culvert below the highway not having enough capacity to safely transport water under the structure. In February of 1963, for example, the structure survived a rainfall of 71 millimetres (2.8 inches) that washed out both the highway and railway at a point closer to Lytton. But on November 14, after the fall of just 29 millimetres of rain—a little more than an inch—the culvert and the highway above it were washed away by a raging torrent of water, boulders and mud. What had changed?
The washed-out Tank Hill Underpass (Photo: BC Ministry of Transportation)
The 807-hectare watershed above the underpass was severely burned during last summer’s 84,000-hectare Lytton Creek Fire. That fire, rather than the quantity of rain that fell, determined the underpass’s fate.
The hydrological impact of forest fires is well understood. A 2011 study, conducted by US Forest Service scientists, noted: “Basins with high-burn severity, especially those with steep, previously forested terrain, have flashier hydrographs and can produce peak-flows orders of magnitude greater than pre-fire conditions.” (See report attached at end of story.)
Note the scientists’ use of the expression “orders of magnitude greater.” As you know, one order of magnitude means 10 times greater. Two orders of magnitude means 100 times greater. And so on.
Why would a forest fire have such a large impact on the hydrological function of a forest? Here’s the short answer from those scientists: “This is due to fundamental changes in the hydrology of burnt watersheds, especially in the short term (1-3 years). Consumption of the canopy and forest-floor organic horizon that formerly intercepted precipitation, moderated infiltration, and protected mineral soil, results in decreased evapotranspiration and infiltration, and increased runoff. Further, newly exposed soil surfaces are subject to rain-drop erosion, which may be exacerbated by fire induced soil-water repellency. Though the hydrologic impacts of high-severity wildfire have been well documented in the scientific literature, the socio-political ramifications of a latent, continuous, and highly unpredictable disturbance regime (i.e. post-fire flooding and sedimentation) has not been addressed.”
At about the same time as the Tank Hill Underpass was washing out, more serious trouble was brewing 50 kilometres to the east. The Coldwater River began to surge over its banks where it joins the Nicola River at Merritt. The west end of the town was flooded above the level that hydrologists had determined would likely be the worst case scenario—the 200-year flood plain—for future floods from melting snowpack. No one foresaw Merritt being flooded by a mid-fall rainstorm. As many as 7000 residents were forced to evacuate. Yet Merritt recorded a mere 14 millimetres of rain—about half an inch—on November 14. There was little or no rain the day before and the day after.
The Merritt flood was obviously the result of rainfall, but where did that rain fall? The town is near the junction of the Coldwater and Nicola rivers and just downstream from where Clapperton Creek—which drains the Nicola Plateau—joins the Nicola.
Flooding in Merritt, looking southeast across the west end of town. The Coldwater River cuts across the centre of the photo. The smaller Nicola River is in the foreground. One of the town’s mills is visible in the background.
Photographs of the Merritt flood posted online show that the Coldwater River was swollen and moving much faster than the meandering Nicola River. While not much rain fell directly on Merritt, precipitation was even lower towards Kamloops. The wave of water, then, likely originated south of Merritt near the headwaters of the Coldwater. That area, too, experienced a large forest fire last summer. The 20,000-hectare July Mountain Fire was contained entirely within the Coldwater River’s watershed.
The same physical factors associated with severely burned forest that caused the washout of the Tank Hill Underpass were in play in the July Mountain Fire area, but in this case the burned area was 25 times larger. As well, there was a much larger area of recent clearcuts and young plantations in the watershed that had severely diminished the watershed’s natural ability to slow the rate at which water could move over the land before it reached the creeks and rivers that led to Merritt. UBC forest scientists XuJian Joe Yu and Younes Alila have found that removing forest in BC has a much greater impact on flooding than previously believed. They found, for example, that even small rates of logging can double the frequency of flooding and large rates of forest removal can result in up to fourfold increases in the frequency of large floods.
Extensive clearcut logging has been allowed throughout the watershed since the early 1980s, but the rate of logging accelerated dramatically after 2009 when the ministry of forests introduced a salvage logging program. The program’s objective was to remove lodgepole pine killed by the Mountain Pine Beetle, but the logging companies were permitted to remove all trees. In the Lillooet and Merritt Timber Supply Areas, only 20 percent of the logging between 2010 and 2019 was related to salvaging dead pine. To make the salvage logging more commercially attractive, companies were permitted to take stands of any species of healthy trees as well. The result was widespread devastation of healthy primary forests and loss of hydrological function in the Coldwater watershed. The time-lapse video below, which runs from 1984 to 2020, shows a portion of the Coldwater River’s watershed that was burned by the July Mountain Fire. Watch for the sudden acceleration in the cut that occurs in 2010.
Time-lapse video of logging in the area of the Coldwater watershed that was subsequently burned by the July Mountain Fire (Google Earth Time-lapse generator)
Seventy-five kilometres southeast of Merritt, Princeton also flooded. It lies at the confluence of the Similkameen and Tulameen rivers. The town saw 66 millimetres of rain—just over 4 inches—over the 3-day period between November 13 and November 15. The last big flood there occurred in 1972, but that event was dramatically different from the November 14 flood. 1972’s soaking was the result of warm temperatures quickly melting a huge winter snowpack in late May. No record of a November flood ever occurring in Princeton could be found by this reporter. But, like the Coldwater, the Similkameen watershed experienced a large forest fire this past summer, entirely within its watershed—the 15,000-hectare Garrison Lake Fire—and extensive clearcutting has been allowed throughout the watersheds of both the Similkameen and the Tulameen. The time-lapse video below records the logging from 1984 to 2000 in the area of the Similkameen’s watershed that was burned by the Garrison Lake Fire.
Time-lapse video of logging in the area of the Similkameen River watershed, 1984-2020, that was subsequently burned by the Garrison Lake Fire in 2021 (Google Earth Time-lapse generator)
If forest fires are an important factor in flooding and water damage to infrastructure—and the scientists tell us that they are—then BC is likely in for a hell of a ride in the coming years. The current forest policy of liquidating as much primary forest as is necessary to compete in the export market for wood products—80 to 90 percent of logging in BC is for exports—is creating roughly 250,000 hectares of new clearcuts each year. Clearcuts and plantations have a higher fire hazard than primary forest, and as the fraction of BC that’s covered by clearcuts and plantations grows, forest fires are becoming larger. More and more of BC will be in that state that the forest scientists described as having “flashier hydrographs” and “can produce peak-flows orders of magnitude greater than pre-fire conditions.” More and more of BC will be unable to control movement of water across the landscape, whether it has burned or not. In short, the government’s current obsession with “export competitiveness” is leading directly to hell.
You can see where all this is heading, can’t you? The cost of the flooding in Merritt and Princeton alone will likely be in the hundreds of millions. The cost of repairing the highway infrastructure and making it more flood and landslide resistant could be of a similar magnitude or greater.
The wise thing to do next—now that we can see how climate change and the current forest management regime in BC are going to synergistically combine to produce physical chaos and social misery—would be to reduce the amount of logging in BC. Let the Chinese and American buyers of BC forests figure out some other way to grow. Instead, the logging companies will keep denuding the land as quickly as the export market will allow. The political class will decide that highways and bridges and flood-prone communities will now need to be reengineered and rebuilt to withstand higher levels of water and sliding hillsides, at whatever great cost. The financial and emotional costs of flooded-out lives will just have to be paid. But who will pay?
Not the logging companies who caused it. Not the American or Chinese consumers of our forest products. Not the government officials who allowed it to happen.
The cost of mitigating against climate change will become just another part of the immense public subsidization of the logging industry in BC. The blissfully unaware public will pay whatever is needed without even knowing they are paying for it.
David Broadland does not consent to the destruction of life on Earth.
- Read more...
- 0 comments
- 381 views
Deforestation dramatically alters how landscapes are able to cope with extreme weather events like the atmospheric river that surged across southern British Columbia earlier this week
Judith Lavoie/The Narwhal/November 17, 2021
- Read more...
- 0 comments
- 210 views
More than the climate crisis was behind last November’s rising waters, death and destruction; experts urge province to make course correction.
The catastrophic flooding in Merritt in November 2021 occurred after a rainfall similar to previous precipitation events that didn’t cause flooding. The difference? Professional hydrologists implicate logging, forest fires and snowpack in the nearby Coldwater River watershed.
WHEN PREMIER JOHN HORGAN declared a provincial state of emergency in the wake of last November’s horrific floods, landslides and deaths, he was quick to name the culprit.
The “never seen before” flooding in southern British Columbia was a direct result of “human-caused climate change,” he said, adding that such floods were “increasing in regularity” thanks to our unceasing use of fossil fuels.
But climate change alone didn’t account for the numerous highway washouts, the lethal landslide that killed five on the Duffey Lake Road, the thousands of people displaced from their damaged or destroyed homes, the dikes and sewage treatment plants overwhelmed by the rising waters, and more.
Other important factors combined to turn last November’s deluge into the monster it became.
Heavy two-day rainfalls similar to those of late last year have occurred in the past without triggering the horrendous damage witnessed in November 2021. Not one, but many things conspired to cause such destruction.
The essential public policy questions now are what lessons the government learns from last year’s events:
Are there things it can easily do now to more accurately anticipate what troubles lie ahead and therefore provide robust early warnings to vulnerable communities?
Can it better regulate industries known to play a role in increased flood frequencies, such as the logging industry?
And finally, what can it do to better incorporate knowledge about climate change-related events such as wildfires into flood forecasting models so that more timely and effective warnings can be given to communities that may be in harm’s way?
Deflecting accountability
One person who has pondered such questions since November’s events is Allan Chapman. A long-time professional hydrologist, Chapman once headed BC’s River Forecast Centre, the critical front-line agency tasked with warning the public and vulnerable communities about flood risks.
He says the premier’s invocation of climate change and climate change alone “deflects accountability for failures within government.”
The potential for last year’s rains to trigger extensive flooding, particularly to lands damaged by wildfires, was foreseeable, Chapman believes, and had only a partial connection to climate change. Other factors like extensive logging and logging roads in key river valleys, or the accumulated snow in mountains that rapidly melted in the face of the rain, were both known risk factors that had nothing to do with climate change at all.
Given the prospects for increased flood severity due to wildfires and logging or the presence of snow in watersheds forecast to get a lot of rain, Chapman says flood forecasting and emergency planning staff in the provincial government had all the information they needed to issue early warnings to vulnerable communities about the potential for dangerous times ahead.
Chapman first publicly voiced concern about the government’s response to last November’s heavy rains a couple of weeks after the event after analyzing the forecast centre’s actions in the lead-up to the floods. He said then that weather and streamflow data readily available to professional staff at the agency should have resulted in them making higher-level warnings far earlier than they did.
Since then, the provincial government has been named in a class action suit, in part for failing to adequately warn residents in the Sumas Prairie about the impending flooding, which resulted in thousands of farm animals being killed, some of the best farmland in the province being contaminated and farm buildings and machinery destroyed.
Chapman has since looked more closely at various data to try to make sense of what happened in mid-November. His review included rainfall data, water flow data in streams and rivers proximate to the flooding, snowpack data in key watersheds and significant land-use disturbances in the watersheds closest to where the flooding occurred.
He has detailed his findings in a 22-page report that he sent to provincial Ministry of Forests hydrologists. The River Forecast Centre is housed in the ministry that is responsible for ensuring the safety of dikes, for managing forest industry activities—including logging and road-building on public lands—and for dealing with wildfires.
Chapman also submitted a lengthy letter summarizing his findings to Forests Minister Katrine Conroy.
One of Chapman’s key findings is that the intense rains of last November were unquestionably large, but in keeping with other heavy rains of previous years.
What happened in November was, in many ways, a classic “pineapple express” or, as it is now more frequently called, an “atmospheric river.”
At some Environment Canada weather stations, including Abbotsford, Aggasiz and Hope, the rainfall recorded for a single day was a record. But the rainfall accumulations over the two days of the storm were not.
“Other major and similar storms appear in the record in October 2003, November 1990 and a few other years. The data lead to the conclusion that although the rainfall on November 14 and 15 was certainly large, it was not unprecedented and should not have been unanticipated” Chapman reported.
Beyond extreme
It is what was layered on top of all of the rain that became the issue.
A pineapple express delivers lots of rain simultaneously with warmer temperatures. If such events are preceded by snow accumulating in the mountains, that can be a big problem. During atmospheric river or pineapple express storms, temperatures warm and the freezing line rises as the storm front passes over. The warmth and rain turn much or all of the snow below the freezing line to water.
Chapman’s report looked at data from several “snow pillows” (sites where snow depths are measured) and weather stations operated by the BC government, and documented how the rapid melting of accumulated snow substantially augmented the rainfall water, increasing peak flows in key rivers.
He concluded that “the water contributed by snow melt” in the critical 48 hours beginning on November 13 and carrying through November 15 was half as much and possibly equal to all of the volume of rainfall at some measurement locations and was “a significant contributor to the severity of the river flooding,” particularly in the Merritt area.
This meant that on critical rivers such as the Tulameen, Nahatlatch and Sumas, peak water flows were in the range of what might be expected every 300 years.
But this was nothing compared to the peak flows on the Coldwater River. Based on water gauge readings on that river both at Brookmere and Merritt, Chapman found that the peak flows were “beyond extreme,” possibly reaching levels seen only once every 1,000 years.
Corresponding data for the Nicola River were not available in real time, Chapman noted. But by looking at readings from gauges in the nearby Coldwater, Chapman estimated that the Nicola’s peak flows were between 700 and 1,000 cubic metres per second—enough water to fill an Olympic-size swimming pool roughly every three seconds. That put the river’s peak flows at levels possibly 2.5 times higher than the previously highest recorded levels, based on 59 years of measurements.
“The rainfall was large, but not unexpectedly large based on the historical record,” Chapman says. “It was the rain on snow that proved to be so significant.”
And that, Chapman says, should not come as a surprise to anyone in the flood forecasting community. He explains that the historical data available show that “all the floods of record” in the Coldwater, Tulameen and Similkameen river valleys “result from October-January atmospheric river rain storms, and this combination of heavy rain and snowmelt. The November 13 to 15 storm, although extreme, should not be considered unusual in this regard. It is the standard flood-causing mechanism for these rivers.”
A burning issue
The “beyond extreme” water level on the Coldwater River was bad news for Merritt’s 7,000 residents. The town’s sewage treatment plant—like many such plants throughout BC—is on the floodplain.
In a cascade of events, the plant was overrun by floodwaters, its contaminated sewage then mixed with the floodwater which in turn contaminated groundwater wells used to supply local drinking water as well.
The evacuation of the town’s residents was inevitable under such circumstances.
Heavy rain on snow—a phenomenon well understood by hydrologists—elevated the severity of the floods. But it was not the only reason flooding was so severe.
Foresters and climate scientists know that temperatures are creeping up and more forests are becoming drier and susceptible to burning.
Mike Flannigan is an award-winning researcher and internationally recognized expert on wildfire behaviour who works at Thompson Rivers University where he is the new BC research chair in predictive services, emergency management and fire science.
He has long warned that wildfire seasons are starting earlier, extending later into the year and that BC along with Canada as a whole are witnessing “significant increases in the area experiencing high to extreme fire danger.” He would like to see the provincial and federal governments produce “risk maps” that clearly spell out where danger may be imminent due to wildfires and floods, especially for northern, more-remote rural communities, both Indigenous and non-Indigenous.
SparksGeo is a Prince George-based company whose geospatial analysts work with satellite data. In April, the company released a report suggesting a connection between the intense wildfires that burned in 2021 and subsequent flood-related destruction, particularly in the highway corridors where some of the most severe road damage occurred.
While it cautioned that “the causes of flood damage are complex and involve the interplay of many different environmental and engineering variables,” the company said the satellite imagery suggests a compelling correlation between the fires and the floods.
Given that apparent correlation, the company said it makes a lot of public policy sense to use satellite imagery and other knowledge of where wildfires have occurred as a tool to better protect the public in scenarios where there may be increased risks of flooding.
“It seems clear that accurate and timely mapping of wildfire damage is an important part of being able to assess the risk that severe flooding poses to our settlements and critical infrastructure,” the SparksGeo report concluded.
Letting communities in harm’s way know of such risks well in advance would give them a chance to proactively invest in flood-protection infrastructure and reduce the likelihood of last-minute, frantic scrambling as was the case in Abbotsford last November when the Barrowtown pump station was only prevented from being overrun by rising floodwaters by the heroic, last-ditch efforts of a volunteer sandbagging crew.
Merritt was never given that opportunity. But in 2007, the community of Terrace was.
That year there was widespread fear that major rivers like the Skeena in the Terrace area and the Lower Fraser could overtop causing extensive damage. The culprit was a huge snow pack that Chapman and others predicted had the potential to cause extensive damage.
Forewarned with that knowledge and the assistance of $200,000 in provincial and federal funds, Terrace armoured its sewage plants treatment lagoons with tons of additional rock as well as digging a deep 100-metre-long trench and filling it with rock to prevent the Skeena from encroaching on and destroying the multi-million dollar facility. The funds were part of $33 million made available by both governments to communities deemed to be in harm’s way that spring.
Unprecedented behemoth
Three of the most-intense wildfires detailed in the SparksGeo report were the July Mountain, Lytton Creek and Tremont Creek blazes. Chapman considered all three in his report and found the significant areas of land burned in each amplified the flood risk.
His analysis is that the July Mountain fire burned 26 per cent of the Coldwater River watershed at Brookmere and 16 per cent of the Coldwater River watershed at Merritt. That fire, combined with those at Lytton Creek and Tremont Creek, burned a further 13 per cent of the Nicola River watershed at Spences Bridge.
Shortwave infrared satellite image of the July Mountain Fire (reddish brown area). The Coldwater River snakes along the fire’s lower edge on the left and then punches through the centre of the burn as it heads toward Merritt.
SWIR image of the Lytton Creek Fire. The Fraser River is on the left. The Nicola River can be seen cutting through the eastern section of the burned area on the right as it heads for the Thompson River.
SWIR image of the Tremont Creek Fire. Kamloops Lake can be seen in the upper right corner, the Thompson River on the left.
One effect of such fires is to blanket once-absorbent forest soils with a wax-like coating—a result of chemical changes that occur during and immediately after fires. This can make them “hydrophobic” or water repellant.
In an interview, Flannigan said that wildfires can have profound consequences as far as water runoff is concerned.
“Some studies suggest as much as seven times more water flow between a forested watershed and a burned or harvested [logged] watershed,” Flannigan says. “Of course, it depends on many factors, but it is not unusual to see that kind of increase.”
He added that in the case of “hydrophobic ash,” it acts “almost like cement. The water just runs straight down based on gravity, no absorption.”
In his report, Chapman says the extensive area of land burned in key areas played a “compelling role” in the flooding that followed and that knowledge of where wildfires occur in future years and their proximity to vulnerable communities must become part of the flood forecasting and emergency planning regime.
“It is probable that these fires were major contributing factors, taking what would have been a large rain and snowmelt flood and creating an unprecedented behemoth catastrophic flood with a 1000 plus--year return period,” Chapman wrote.
Chapman notes that forest fire data are provided by the Northwest River Forecast Center in Portland Oregon as part of their flood forecast information for Washington and Oregon, but that similar information does not seem to be considered in BC. Flood forecasting and the models used to predict site-specific flood threats would be dramatically improved, in Chapman’s opinion, if two things happened:
The Ministry of Forests clearly recognized the vulnerability that certain communities face in the event of rain-on-snow events and built that knowledge into flood forecast models.
The ministry ensured that information on areas burned by wildfires be built into such models as well and be considered as a key risk factor when deciding when and where to issue flood warnings. This would involve much more information-sharing between water and wildfire experts spread through a very large ministry.
Such changes become even more crucial with climate change, something the provincial government was specifically warned about in 2010 by Jim Mattison, a long-time civil servant and formerly the provincial government’s top water official.
In a report that he wrote as a consultant that year, Mattison noted climate change was starting to “affect the lives of citizens every day.” This demanded improved and more-effective forecasting, he said, which was one reason he advocated for more than doubling of BC’s Forecast Centre staff. Today, 12 years after his report was submitted, staffing levels stand at six, one more than they were when Mattison issued his report and six positions below the 12 he said were needed.
Mattison also warned that not enough data were being used by Forecast Centre staff to plug into their predictive flood models and therefore the models were “limited in their ability to provide accurate flow forecasts.”
In its 2022 budget, the provincial government indicated the River Forecast Centre and provincial floodplain mapping programs will be expanded.
The logging industry and flooding frequency
The word anthropogenic has been joined at the hip with climate change because unlike previous dramatic shifts in the earth’s climate going back hundreds of millions of years, today’s shifting climate is being driven by human activities.
But there are also more immediate human activities to be concerned about. One of the biggest in a mountainous, once extensively and naturally forested province is clearcut logging and related road-building activities.
In recent decades, logging rates have accelerated to unprecedented levels, particularly in BC’s vast interior region, where the provincial government actively encouraged the logging industry to dramatically increase logging rates starting more than 20 years ago.
The pretext for what became known as “the uplift,” was that mountain pine beetle populations had exploded in number thanks to generally warmer winters and killed tens of millions of lodgepole pine trees - the most prevalent tree species in BC’s interior region.
“Salvaging” those dead trees before they lost their value became the goal, with the government giving industry the green light to log an additional 11 million cubic metres of trees per year. But turbo-charging logging rates had serious ecological and hydrological consequences as droves of healthy, living trees were cut down along with the beetle-attacked ones. By the time all this bonus logging was done, up to 63 million cubic metres of additional trees were logged, enough to fill a line of logging trucks bumper to bumper from Vancouver to Halifax five times over.
Timelapse images of logging in the Coldwater River Watershed, including an area burned by the July Mountain Fire in 2021.
Not surprisingly, by the government’s own admission logging rates are now poised to crash, much like the ecosystems that once supported healthy forests.
Younes Alila is a hydrological engineer and professor at the University of BC who specializes in forest hydrology and watershed management issues. Over years of study, he has concluded that “the flood regime in BC is super-sensitive to disturbances of any kind,” including logging activities, wildfires and climate change. Such disturbances are likely to result not just in the increasing severity of future floods but in their increased frequency. And their impacts, Alila warns, will be long-lasting.
“British Columbians are in for a hell of a ride for decades to come,” he predicts.
In the 1990s, when he joined UBC’s Faculty of Forestry, Alila recalls there were limits on the amount of logging that could occur in any one watershed, the limits generally 25 per cent. But that subsequently went out the window in the logging free-for-all that followed.
“That threshold is not used anymore,” Alila said during an interview with CBC Radio a few weeks after last November’s floods. “Over the last 20 years, we have been clearcut logging watersheds across all sizes by as much as 40 per cent, 50 per cent, 60 per cent and even more, which, of course, increases substantially the risk of flooding. My research shows that the flood regime is highly sensitive to clearcut logging in both small and large watersheds. As little as 20 per cent logging in large watersheds causes a 20-year, a 50-year and a 100-year flood event . . . to become four to 10 times more frequent.”
A sensitive and fragile flood regime
“Entire ecosystems,” are being impacted by logging at such a scale, Alila warned, noting that if you could drop a hat out of an airplane flying over parts of the province today there is a 90 per cent chance it would fall in an area of forest that had been logged.
Alila says that restoring more natural water flows in logged BC Interior forests takes a very long time. In the first 20 years following logging and replanting, only 20 per cent of the “hydrological functionality” is restored. (Logging roads and the threats they pose to landslides and altered water flows are discussed in a second piece that focuses on the tragic deaths of five people on the Duffey Lake Road during last November’s heavy rains.)
“The way that we have been logging and increasing the cut rate and increasing cutblock size in my opinion does not reflect an industry or even a government that appreciates how sensitive and how fragile the flood regime in BC is to land use change and global warming,” Alila told CBC’s Chris Walker, adding that nothing less than a “complete paradigm shift” is needed to the way we manage forests.
In his analysis, Chapman also focuses on logging and related logging road densities in the Coldwater, Nicola and Tulameen river basins. His conclusion is that “there is a strong possibility for historic forestry activity to be associated with the extreme peak flows in those rivers and the flood-related damage to follow.
“Clear-cutting and forest fires encompass 35% of the basin of the Tulameen River at Princeton, and 41% of the basin of the Coldwater River at Merritt. Road densities are also very high at 1.85 km/km2, and 1.5km/ km2, respectively in the two basins, potentially augmenting the rapid movement of storm rainfall into stream channels, causing peak flows to be increased,” he wrote.
Alila subsequently outlined numerous things he feels must change in revised provincial forestry legislation.
An overhauled system should require a watershed assessment to be done prior to logging permits being issued. This includes projections of how logging may impact such things as floods, droughts, landslides and water yields, as well as considering the impacts of logging against the backdrop of a changing climate, Alila says.
He also recommends that thresholds be reinstated placing strict limits on the overall area of forest in a watershed that can be logged and that priority should be given to community watersheds, which are often critical to the provision of clean drinking water, watersheds with high fisheries values and large watersheds that drain into urban and semi urban areas, some of which may be on floodplains and therefore extremely vulnerable to flood-related damage.
“We cannot continue to log as if there is no connection between what we do to the landscape in the upland and downstream lowland values, especially when human lives and costly infrastructure are in harm’s way,” Alila says.
He would also like to see the important hydrological functions performed by forests embedded into the critically important allowable annual cut decisions made by the province’s chief forester.
Those decisions set the maximum logging threshold in various timber supply areas in the province and, in Alila’s view, have never properly accounted for the important hydrological role played by forests or how long it takes logged forests to recover once they have been logged. If such accounting happened, less forest would be logged.
Cumulative impacts
Lastly, Alila says successive governments have failed to grapple with the outstanding issues of cumulative impacts of multiple industrial operations—logging, mining, natural gas—in watersheds over time.
“For decades, no considerations have been given in BC to cumulative effects of land use,” Alila writes, noting that cumulative effects can apply to the forest industry itself, as is often the case because many logging companies may operate at the same time in the same watershed “with little or no coordination” from the government.
“In a nutshell, forest management in BC has never been conducted in ways that portray an appreciation of the value of forest cover in maintaining the overall health of the ecosystem,” he says.
In northeast BC, the overall health of the forests was understood by First Nations in the region because from one generation to the next they hunted wildlife, caught fish, trapped fur bearing animals, harvested berries and gathered medicinal plants.
When their leaders signed Treaty 8 in 1899, the agreement recognized the rights of First Nation members to continue to be able to hunt, fish and trap as before.
More than a century later, when members of the Blueberry River First Nation realized how multiple industrial developments—including clearcut logging, hydroelectric dams, natural gas drilling and fracking operations—had so fragmented their lands that they could no longer carry out their treaty-protected rights over much of their traditional territory, they went to court.
In a landmark decision last year, the BC Supreme Court ruled the provincial government had unjustifiably infringed on their rights through the cumulative effects of numerous government-approved industrial developments. The ruling effectively brought a great deal of industrial activity in the Nation’s traditional territory to a standstill, pending a court-ordered negotiation between the provincial government and the Nation.
The Supreme Court decision may only foreshadow what is to come. In addition to being named in the class action suit in Sumas Prairie, another class action naming the provincial government has been launched by citizens in the Grand Forks area who were flooded out of their homes a few years ago, and who blame the cumulative impacts of government-approved logging and logging road developments in the Granby and Kettle watersheds for the devastation that befell them.
Years of approving one industrial development after another and disregarding cumulative impacts are coming back to haunt the provincial government in a big way as residents, businesses and Indigenous and non-Indigenous communities alike across the province deal with the fallout. The bills for the destruction wreaked last November now approach $9 billion, and who knows what costs may be added into the mix as a result of the class action suits the government now faces.
Climate change is making a bad situation of the government’s own making even worse. Highlighting, again, the need for corrective action.
Ben Parfitt is a resource policy analyst with the Canadian Centre for Policy Alternatives, and a longtime investigative writer.
- Read more...
- 0 comments
- 369 views